Introduction to ListOutputParser
The ListOutputParser
in Spring AI is a useful tool that allows you to parse AI-generated responses directly into Java List
objects. This parser helps convert raw model outputs into a list of items, making it easier to work with AI-generated data in a structured and flexible way. This tutorial will guide you through setting up a Spring Boot application and demonstrate how to use ListOutputParser
to handle AI-generated content effectively.
1. Setting Up the Project
Step 1: Create a New Spring Boot Project
You can create a new Spring Boot project using Spring Initializr or your preferred IDE. Ensure you include the necessary dependencies for Spring Web and Spring AI.
Using Spring Initializr:
- Go to start.spring.io
- Select:
- Project: Maven Project
- Language: Java
- Spring Boot: 3.0.0 (or latest)
- Dependencies: Spring Web, Spring AI
- Generate the project and unzip it.
Step 2: Add spring-ai-openai-spring-boot-starter
Dependency
In your project's pom.xml
, add the following dependency:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
<version>1.0.0</version>
</dependency>
2. Configuring the Spring Boot Starter
Step 1: Add API Key to Configuration
Create a application.properties
or application.yml
file in your src/main/resources
directory and add your OpenAI API key.
For application.properties
:
openai.api.key=your_openai_api_key
For application.yml
:
openai:
api:
key: your_openai_api_key
Step 2: Create a Configuration Class
Create a new configuration class to set up the OpenAI client and the ChatClient
abstraction.
package com.example.demo.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.ai.openai.OpenAiChatClient;
import org.springframework.ai.openai.OpenAiClient;
import org.springframework.ai.openai.parser.ListOutputParser;
@Configuration
public class OpenAiConfig {
@Bean
public OpenAiClient openAiClient() {
return new OpenAiClient();
}
@Bean
public ChatClient chatClient(OpenAiClient openAiClient) {
return new OpenAiChatClient(openAiClient);
}
@Bean
public ListOutputParser listOutputParser() {
return new ListOutputParser();
}
}
3. Implementing the ListOutputParser
Step 1: Create a Service for Parsing Output
Create a service class that will handle interactions with the ChatClient
abstraction and use ListOutputParser
to process the AI-generated responses.
package com.example.demo.service;
import org.springframework.ai.openai.ChatClient;
import org.springframework.ai.openai.model.ChatRequest;
import org.springframework.ai.openai.model.ChatResponse;
import org.springframework.ai.openai.parser.ListOutputParser;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.util.List;
@Service
public class ListOutputParserService {
@Autowired
private ChatClient chatClient;
@Autowired
private ListOutputParser listOutputParser;
public List<String> parseAiResponse(String userInput) {
// Create the chat request
ChatRequest request = new ChatRequest();
request.setMessage(userInput);
// Send the chat request and get the response
ChatResponse response = chatClient.sendMessage(request);
// Parse the response into a List
return listOutputParser.parse(response.getReply());
}
}
Step 2: Create a Controller for the Service
Create a controller to expose an endpoint for parsing AI-generated responses into a List.
package com.example.demo.controller;
import com.example.demo.service.ListOutputParserService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import java.util.List;
@RestController
public class ListOutputParserController {
@Autowired
private ListOutputParserService listOutputParserService;
@GetMapping("/parseResponse")
public List<String> parseResponse(@RequestParam String userInput) {
return listOutputParserService.parseAiResponse(userInput);
}
}
4. Testing the Integration
Step 1: Run the Application
Run your Spring Boot application. Ensure the application starts without errors.
Step 2: Access the Endpoint
Use Postman, curl, or your browser to test the endpoint. For example:
http://localhost:8080/parseResponse?userInput=List the steps to complete the project
You should receive a response with the parsed AI-generated content mapped into a List
.
Conclusion
In this tutorial, you learned how to set up and use the ListOutputParser
feature in a Spring Boot application with Spring AI. You created a service to handle AI responses, a controller to expose an endpoint, and a ListOutputParser
implementation to process the AI-generated content into a List
. This setup allows you to transform raw AI outputs into structured and usable data formats, making your AI integrations more powerful and flexible.
Explore further customization and enhancements to leverage the full potential of ListOutputParser
in your applications.
Comments
Post a Comment