Introduction to OutputParsers
In Spring AI, OutputParsers
are powerful tools that allow you to process and interpret the responses from large language models (LLMs). They enable you to convert raw model outputs into structured data formats that are easier to work with in your applications. This tutorial will guide you through setting up a Spring Boot application and demonstrate how to use OutputParsers
to handle AI-generated content effectively.
1. Setting Up the Project
Step 1: Create a New Spring Boot Project
You can create a new Spring Boot project using Spring Initializr or your preferred IDE. Ensure you include the necessary dependencies for Spring Web and Spring AI.
Using Spring Initializr:
- Go to start.spring.io
- Select:
- Project: Maven Project
- Language: Java
- Spring Boot: 3.0.0 (or latest)
- Dependencies: Spring Web, Spring AI
- Generate the project and unzip it.
Step 2: Add spring-ai-openai-spring-boot-starter
Dependency
In your project's pom.xml
, add the following dependency:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
<version>1.0.0</version>
</dependency>
2. Configuring the Spring Boot Starter
Step 1: Add API Key to Configuration
Create a application.properties
or application.yml
file in your src/main/resources
directory and add your OpenAI API key.
For application.properties
:
openai.api.key=your_openai_api_key
For application.yml
:
openai:
api:
key: your_openai_api_key
Step 2: Create a Configuration Class
Create a new configuration class to set up the OpenAI client and the ChatClient
abstraction.
package com.example.demo.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.ai.openai.OpenAiChatClient;
import org.springframework.ai.openai.OpenAiClient;
@Configuration
public class OpenAiConfig {
@Bean
public OpenAiClient openAiClient() {
return new OpenAiClient();
}
@Bean
public ChatClient chatClient(OpenAiClient openAiClient) {
return new OpenAiChatClient(openAiClient);
}
}
3. Implementing the OutputParsers
Step 1: Create a Service for Parsing Output
Create a service class that will handle interactions with the ChatClient
abstraction and use OutputParsers
to process the AI-generated responses.
package com.example.demo.service;
import org.springframework.ai.openai.ChatClient;
import org.springframework.ai.openai.model.ChatRequest;
import org.springframework.ai.openai.model.ChatResponse;
import org.springframework.ai.openai.parser.OutputParser;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.util.List;
@Service
public class OutputParserService {
@Autowired
private ChatClient chatClient;
@Autowired
private OutputParser outputParser;
public List<String> parseAiResponse(String userInput) {
// Create the chat request
ChatRequest request = new ChatRequest();
request.setMessage(userInput);
// Send the chat request and get the response
ChatResponse response = chatClient.sendMessage(request);
// Parse the response using the output parser
return outputParser.parse(response.getReply());
}
}
Step 2: Create a Controller for the Service
Create a controller to expose an endpoint for parsing AI-generated responses.
package com.example.demo.controller;
import com.example.demo.service.OutputParserService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import java.util.List;
@RestController
public class OutputParserController {
@Autowired
private OutputParserService outputParserService;
@GetMapping("/parseResponse")
public List<String> parseResponse(@RequestParam String userInput) {
return outputParserService.parseAiResponse(userInput);
}
}
4. Creating an OutputParser
Implementation
Step 1: Create a Custom Output Parser
Create a custom implementation of the OutputParser
interface to handle specific parsing logic.
package com.example.demo.parser;
import org.springframework.ai.openai.parser.OutputParser;
import org.springframework.stereotype.Component;
import java.util.Arrays;
import java.util.List;
@Component
public class CustomOutputParser implements OutputParser {
@Override
public List<String> parse(String output) {
// Example parsing logic: split the output into sentences
return Arrays.asList(output.split("\\. "));
}
}
Step 2: Register the Custom Output Parser
Ensure your custom OutputParser
is registered as a Spring bean so it can be injected into the service.
package com.example.demo.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import com.example.demo.parser.CustomOutputParser;
import org.springframework.ai.openai.OpenAiClient;
import org.springframework.ai.openai.ChatClient;
import org.springframework.ai.openai.OpenAiChatClient;
@Configuration
public class OpenAiConfig {
@Bean
public OpenAiClient openAiClient() {
return new OpenAiClient();
}
@Bean
public ChatClient chatClient(OpenAiClient openAiClient) {
return new OpenAiChatClient(openAiClient);
}
@Bean
public OutputParser outputParser() {
return new CustomOutputParser();
}
}
5. Testing the Integration
Step 1: Run the Application
Run your Spring Boot application. Ensure the application starts without errors.
Step 2: Access the Endpoint
Use Postman, curl, or your browser to test the endpoint. For example:
http://localhost:8080/parseResponse?userInput=Tell me a story.
You should receive a response with the parsed AI-generated content.
Conclusion
In this tutorial, you learned how to set up and use the OutputParsers
feature in a Spring Boot application with Spring AI. You created a service to handle AI responses, a controller to expose an endpoint, and a custom OutputParser
implementation to process the AI-generated content. This setup allows you to transform raw AI outputs into structured and usable data formats, making your AI integrations more powerful and flexible.
Explore further customization and enhancements to leverage the full potential of OutputParsers
in your applications.
Comments
Post a Comment